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What do we mean by complexity?

@ Computer science: Computational complexity
(Turing, Church, ...)
@ Systems and control:
» Computational complexity
(see survey by Blondel and Tsitsiklis)
» Feedback control under uncertainty
(Zames; Egerstedt and Brockett; Delvenne and Blondel; Zhang
and Guo)

@ System identification:




Complexity in system identification

(]

Kolmogorov n-width (Zames)

@ VC-dimension and PAC-learning
(Vapnik-Chervonenkis, Vidyasagar)

The minimum cost required to get within a given accuracy

(]

The minimum experimental cost

(]

Example: Time complexity of worst-case system identification
(Poolla and Tikku)

Here: The minimum experimental cost required to achieve a
certain performance in the application



Experiment design for system identification

@ Much work in 1970's:

(Mehra; Goodwin and Payne; Ng, Goodwin and Séderstrom;
Zarrop)

» Scalar criteria, often not involving the application directly

> All covariance matrices can be generated by sinusoidal inputs

@ Renewed interest in mid 1980's:

» Use of high order variance expressions (Gevers and Ljung)
» Design tied to the application (e.g. minimum variance control)

@ Revival in 2000's:

» Least-costly identification for robust control
(Bombois, Scorletti, Van den Hof, Gevers and Hildebrand)

» Semi-definite programming (Cooley, Lee and Boyd; Lindqvist;
Jansson)

» Robust stability and robust performance criteria (Hildebrand
and Gevers; Jansson)

» Nonlinear systems (Martensson; Novara, Vincent and Poolla)

» Robust input design (Martensson; Rojas, Welsh, Goodwin,
Feuer)

» Plant-friendly desien (Rivera. Lee. Mittelmann and Braun)



Is there a problem?

The water-bed effect (Rojas, Welsh and Agiiero):

1 us . . N

— N®(d)  Var[G(e/)]dw = n A
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Input energy density # parameters noise variance

(output error models)

A fundamental limitation

YES, there is a problem!



(O} 0),

o
Please say hello to:

lzzy and  Ozzy

Static gain estimate
Model order: | very low | true | very high
Constant input good good good

Impulse response coefficient estimate
Model order: | very low | true | very high
White input fair good good

otal error

Variance error
Bias error

Optimal order model order

Robustness against choice of model order. Why?



Cost of complexity

An alternative formulation

Output error models

Some connections to the past

The impact of optimal experiments on the identification problem
Numerical computation of experiment designs

Implementation of experiment designs



An application example: MPC of a DC-motor

@ Input: Voltage V
@ Output: Angle ¢r,

@ Model parameters 6: Resistance R, Moment of inertia Jz,
Elasticity K, ...

@ True parameters: 0°



An application example: MPC of a DC-motor

@ |deal response: y.(6°) - true parameters used in MPC
o Actual response: y.(6) — parameter 6 used in MPC

Constraint: Maximum input move 40

—Y,(6%)

o 2

—Y,(6%)
—¥,(©)

a 6 % 2 a
t[s] t[s]

Performance degradation /Set of acceptable models

LN
Vapp(0) = D e(6°) — i (6))?

Eapp = {9 t Vapp(0) < %} (v = accuracy)




An application example: MPC of a DC-motor

Set of acceptable models &,p,,: (Maximum move size 3)




Summary of concepts

@ Performance degradation for application: Vg,,(6)
@ Set of acceptable models: &, = {9 : Vapp(0) < “ly}

o ldentification: Produce éN € Eapp C R™ (N = sample size)
@ Cost of complexity Q

=Minimum possible experimental cost required for O € Eqpp
@ Least-costly identification

o Quantification of ()
@ Here: Experimental cost = input energy

Cost of complexity
Q := min NE[u?]
s.t. éN € gapp CcR"”

An optimal experiment design problem




|dentification recap

Prediction error identification:

» Prediction error: £:(6)

> Oy = argminZ?]:1 e1(0), Via(0) = E[e}(0)] = Ae 2 0
Random noise (innovations (noise) variance \.)

Stationary signals
True system in the model set: S, < 69 (to be relaxed later)

High accuracy v (implies large sample size N)
o VN (B = 0°) ~ ASN (0,20, V/(0%) ")



The cost of complexity

@ Random noise = éN random variable

@ Cannot guarantee éN € Eaupp

o Relaxation: Probability (Ay € £,p) = (= 99% e.g.)
@ In general difficult to compute

@ Use standard asymptotic confidence ellipsoids:
Probability (A € Eq) ~ o, where
Cost of complexity

Q := min NE[u?]
s.t. &g C Eqpp C R™




An alternative expression for the confidence ellipsoid

eid={9: N o —eo) zwf))(e—e‘))sm}

Recall: V;4(0) = — Xe. High accuracy v, i.e. &;pp small

%/“

= Via(6) = 50— 0°) V()0 — 0°)

= Eid = {9 : NVld(Q) <A n}

Confidence ellipsoid = Level set for identification criterion!



An alternative formulation of cost of complexity

Level sets:

Eom = {05 Viy(0) < 1} = 10:9700y(0) < 1)

N
4 <1
v <1

Recall: High accuracy v = &gy small = Vjq and Vg, quadratic:

(c,’id: {9 NWd(Q) S )\en} = {(9

N
)\en‘/id(a) > ’Vvapp(e) Vo € Eapp

& NVig(0) > AeynVapp(0) VO € Eapp

5id - gapp ~




An alternative formulation of cost of complexity

Cost of complexity
Q := min NE[u?]
s.t. NV;q(0) > AeynVapp(0), YO0 € Eqpp

Example (Estimation of an impulse response coefficient)
o Model: y; = Y1 Opui—i + e
@ Objective: Estimate 6
® Vapp(9) = (69 — 61)°
@ Only one parameter matters!

@ but our confidence ellipsoid includes all n parameters

@ Use a confidence ellipsoid for that parameter only: n =1




A generalized version

General case:

Napp = ## non-singular directions of Vi, (= rank V)
Cost of complexity
Q := min NE[u?]
s.£. NVia(8) > Aey1appVipp(8), V0 € Eapp




Output error models

True system: y; = Go(q)us + €
Model: vy = G(q, 0)us + e

PE: ei(0) =yt — G(q,0)ur = (Go(q) — G(q,0))ur + e



Output error models

Cost of complexity

1 [T o
Q := min NE[u?] = o N®“ () dw
™ —Tr

s.t. NViq(0) > AeYNappVapp(0)

o [T N®id(eiw) |G(eIw,0)—Go(ei@)|? dw

@ Minimization with respect to energy density spectrum N ®i?

@ Optimization tries to achieve

NVia(0) = Ae ¥ appVapp(0)

Identification cost matched to performance degradation



Output error models: Influence of Acyngy,

1 [T o
Q= o N®M (el dw
—Tr

1 (7 o ) )
s.t. 2—/ Ncb;d(eaw) |G(eaw,9) — Go(eﬂw)|2 dw > AeY1app Vapp(6)
™ —Tr

o Cost & constraint linear in N4
= Problem scales with A\cyngpp
= Cost of complexity: QQ = AeYNapp Q
Optimal energy density: N®% = Aeyn®y,
where @u the solution to

Q := min E[u?(t)]
s.t. Via(0) > Vapp(0)

@ Independent of sample size, noise variance, accuracy, # of
parameters

@ Normalized problem



The normalized problem - Insights

Q := min E[u?(t)]
s.t. Vig(0) > Vipp(6)

Maximum input move 3 Maximum input move 40

10 - - 10
15 S
J

R L

@ Performance specifications determine the shape of Vg,;,,(6)
@ Curvature of Vg,,(0) increases when specs. are tightened

= () reflects performance specifications in the application
We will use 0 < ¢ <1 to indicate specs. i.e. Q(§)



lzzy and Ozzy goes to MRC (model reference control)
-

Desired sensitivity function |S, |

10
Frequency (rad/s)

o Controller C = C(G), G output error model
@ Desired sensitivity function: S¢

@ Achieved sensitivity function: S(G) = L

1+C(G)G,
==

@ Performance degradation: Vg,,(G) : )



MRC: Cost of complexity

Q := min E[u?(t)]
s.t. Vig(0) > Vapp(e)

@ Matching condition: Vj4(6) = Vi, (0)
@ Output error:

Via(0) = g5 [T, u(e?) |G(e7,0) = Gole?)|” dw
o MRC:

Vapp(G) = Hs_gng ~ () |G — Go|? dw

@ Take q)u = (I)ﬁeszred/Ae = N@Zd - ,ynq);iteszred
Scaled version of desired operating conditions!

= Upper bound: Q < yn|®@desired||,

T cbdeszred

—T



MRC: Cost of complexity

15?5

Q < ,.Yn”q)deszred” _ )\E,Yn’
Allows user to make informed trade ost:
Performance specs. vs experimental cost
Time vs excitation: N®/4 = ypddesired;
Minimum time stealth id.: E[u?] < \ax
= min N = yn—desired

max
A

Cost of complexity

0 10°
-20 §
True syst
-40 10°
60 3
m . @
T -80 C II!JI-!:: nentary =0.3 g 10°
_100 sensitivity ~0.2 E‘
120 =0.1 2
10 ——Optimal input
-140 ; — White input
-160 : b : 0
-1 0 1 . L "
10 10 10 % 0.2 04 06 08 1

Frequency [rad/s] 3



Output error models: Cost of complexity - Summary

Cost of complexity
Q = Ae Y Napp Q(S) J

@ )\.: noise level
@ ~: accuracy
® Ngpp: # of non-singular directions in the parameter space

o Q(&): normalized cost

Implications:
@ System complexity not important
@ Performance specs of application determine cost

@ Allows user to make informed trade-offs:
specs. vs cost, time vs excitation



Some connections to the past

Identification experiment = desired closed loop operating
conditions:
@ Random errors
» Minimum variance control (Gevers and Ljung 1986,
Hjalmarsson, Gevers and De Bruyne 1996, Hildebrand and
Solari 2007, Méartensson, Rojas and Hjalmarsson 2009)
@ Bias errors
» Many contributions in the 1990s to identification for control,
e.g.
» Control-relevant prefiltering (Rivera, Pollard, Garcia 1992)
> lterative identification and control (Schrama 1992, Zang,
Bitmead and Gevers 1995)
» Virtual feedback reference tuning (Campi, Lecchini, Savaresi
2002)
@ Contributions here:
> Results above different sides of the same coin
(matching V;q and Vi)
» Matching not enough. Sufficient input energy required.
(N(I)Zd — )\e,ynq)gesired)




The lzzy & Ozzy problems revisited: Static gain estimation

Model order: low | true | high
Constant input | good | good | good

n
Yt = Z Opu—i + €t
=1

(X0 —2207)°

Performance degradation: Vg, (6)
Vapp(0) =0

Z

@ Optimal input: u; = u (constant) :>0 Y= 0 +e
@ Property of interest visible
@ No other system property visible (due to min energy crit.)
= Perfect match V;4(6) ox Vipp(6)
@ Same input optimal for high order system = high order ok
0 Via(0) ox Vgpp(#) = Bias minimized!
@ V;q(6*) = 0 = no unmodelled dynamics = low order optimal



The lzzy & Ozzy problems revisited: Impulse response

Model order: | low | true | high
White input | fair | good | good

Performance degradation: Vo,,(6) = (61 — 69)?

OOOO‘U’OOO

Vapp(e) =0
B2

7a(6) =const

01
Optimal input: white
Property of interest visible
All system properties visible (V4 cannot be shaped arbitrarily)
No match V;4(0) ox Viapp(6)
Same input optimal for high order system = high order ok
Viq aligned to V,,, = Bias minimized!
Via(6*) > 0 = unmodelled dynamics = low order not optimal
NMP-zero estimation another example



MRC: Model selection using AIC

@ AIC unbiased estimate of E[Viq(Ay)]

@ Optimal experiment design: Vig o< Vipp

o Use AIC to estimate E[Vy,(An)]

@ Model order selection with the application in mind
@ MRC example revisited:

Histogram - white input — AIC Histogram - optimal input — AIC

30 v ; : 30 v ‘
60% pass . 40% fail 93% pass | 7% fail

25¢ ! H 25¢

20t — 20t

15} . H 15}

10 1y | 10

5t i 5

0 11 I 1 [ |

0 0.01 0.02 0.03

3 0.01 0.02 0.03
Performance degradation

Performance degradation

0.04




|dentification using optimal experiments: Summary

Optimal experiment
Aims at achieving

NVid(e) =AY ”appvapp(e)

using minimum energy

@ To achieve this requires parsimonious excitation:
i) System properties important to the application should be
visible in the data
ii) System properties not important to the application should not
be visible in the data, unless necessary for i).
(The let sleeping dogs lie paradigm)

@ As a result, the entire system may not have to be identified!

» Choice of model structure less critical
» Advice: Don't use too low order (c.f. impulse response). Use
model reduction instead (c.f. the ASYM method by Zhu).



Numerical computation

Cost of complexity
Q := min NE[u?(t)]
s.t. NVig(0) > AevnappVapp(0)

Recall: Output error models

NVia(6) = 2i NGO () |G 0 8) — Gole)[* dw

NE[u?(t / N®(e?)d

@ Use finite dimensional parametrization of N ®id
= Semi-definite program!

@ Generalizes to other model structures



Implementation

@ Optimal experiment design = Input spectrum ®,,
@ Spectral factorization: ®(e/¥) = |R,(e/)|?

€t

Whlte




Implementation

Cost of complexity
Q := min NE[u?(t)]
s.t. NViq(0) > AevnappVapp(6)

@ Optimization problem depends on the unknown system!
@ Major obstacle

@ Solutions:

» Robust experiment design
(e-g. Rojas, Welsh, Goodwin, Feuer 2007)

» Adaptive (sequential) experiment design



Adaptive input design

White

@ An adaptive feedback system
@ But measured signal not fed back directly

@ Exp. design limits input power = Stability when G, stable
Key questions:

@ Convergence?

@ Accuracy?



Adaptive input design

Key questions:
o Convergence?

@ Accuracy?

Theorem (Gerencsér's free lunch theorem for ARX-models)
@ True system in the model set

@ System stable

= Optimality when sample size grows




Adaptive input design

What happens when true system is not in the model set?

Example

NMP-zero estimation
o Quantity of interest: z,: Go(25) =0, |2o| > 1
@ Optimal input: uy = ——

z=l—2, wt

o Vig and Vg, not matched (c.f. impulse response problem)

o Still y4 = O1us + O2u;_1 = consistent estimate




Example: Non-minimum phase zero estimation

dB

(g —3)(g—0.1)(¢g — 0.2)(¢ + 0.3) q
True system: y; = u ey
ystem: b 7*(q — 0.5) R
0 0
Model: y; = 1q—_;2ut + ey
q
True system Zero estimate
70 r
60 \’
50 3 P mvatiatis s
40
30 ~ , ] N
20 ; ; | 2.5
—G
10y
° 2 ‘
_1,?073 102 10" 10° 0 50t00 10000

Frequency [rad/s]



Example: Non-minimum phase zero estimation

Theorem (Rojas and Gerencsér)

True system: vy = Go(q)us + Ho(q)e?
with G, and H, stable and rational.

2y — largest NMP-zero of system w.p.1




What have we learnt?

@ A framework for quantification of the experimental cost where
the application is taken into account

Allows the user to make trade-offs

e ©

The optimal experiment matches the identification criterion to
the performance degradation using parsimonious excitation
(The let sleeping dogs lie paradigm)

Simplifies the identification problem
@ Adaptive input design practical implementation

@ Focus on the application!

Future directions:
@ Nonlinear systems
@ Structured systems (e.g. decentralized and networked)
@ Communication systems
@ Adaptive control

A lot of exciting problems remain!!!
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