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Introduction

Problem Setting

True System:

yt =
Lo(q)

Fo(q)
ut +

Co(q)

Do(q)
et

Model:

yt =
L(q, θ)

F (q, θ)
ut + vt

vt = H(q, θ)et

H(q, θ) =
C(q, θ)

D(q, θ)

Estimate θ!
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Introduction

Prediction Error Method

Minimize cost function:

V PEM
N (θ) =

N∑

t=1

[
1

H(q, θ)

(
yt −

L(q, θ)

F (q, θ)
ut

)]2

Non-convex!
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Introduction

Test example

Box-Jenkins:

yt =
Lo(q)

Fo(q)
ut +

1 + 0.8q−1

1− 0.9q−1
et

System (6th order):
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Introduction

Simulation

PEM
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Introduction

Simulation

Alternatives and complements to PEM:

• Instrumental variable methods

• Subspace methods

• Iterative least-squares methods

• Multi-step high-order least-squares methods
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Iterative Least Squares Methods

Iterative Least Squares Methods

Output Error Models: yt = L(q)
F (q)ut + et

PEM: V PEM
N (θ) =

∑N
t=1(yt − L(q)

F (q)ut)
2

Non-convex :( Tempting to try:

N∑

t=1

(F (q)yt − L(q)ut)
2

Modified PEM is Least-Squares!
but biased since we (for open loop data) are minimizing

N∑
t=1

F (q)

(
Lo(q)

Fo(q)
ut + et

)
− L(q)ut

2

≈
N∑
t=1

(
F (q)Lo(q)− Fo(q)L(q)

Fo(q)
ut

)2

+
N∑
t=1

(
F (q)et

)2
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Iterative Least Squares Methods

Steiglitz-McBride

Step 1: Estimate F (q, θ)yt = L(q, θ)ut + et =⇒ θ̂1N

Step 2: Filter the data according to

yft =
1

F (q, θ̂1N )
yt, uft =

1

F (q, θ̂1N )
ut

Step 3: Estimate F (q, θ)yft = L(q, θ)uft + et =⇒ θ̂2N

Iterate!

VN (θ) =
1

N

N∑

t=1

[
F (q, θ)

F (q, θ̂kN )
yt −

L(q, θ)

F (q, θ̂kN )
ut

]2

θkN → θo as k →∞ and N →∞
...but the noise must be white and θ̂N is not asymptotically efficient!
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Multi-Step High Order Least-Squares Methods

Multi-Step High Order Methods

• Prefiltering

• Residual estimation

• Optimal model reduction

• Weighted Null Space Fitting (WNSF)
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Multi-Step High Order Least-Squares Methods

High-Order ARX Models

yt = Go(q)ut +Ho(q)et ⇐⇒ Ao(q)yt = Bo(q)ut + et

Ao(q)=
1

Ho(q)
= 1+ao

1q
−1 + ao

2q
−2 + · · ·

Bo(q)=
Go(q)

Ho(q)
= bo

1q
−1 + bo

2q
−2 + · · ·

A(q, ηn)yt = B(q, ηn)ut + et

A(q, ηn) = 1 + a1q
−1 + · · ·+ anq

−n B(q, ηn) = b1q
−1 + · · ·+ bnq

−n

ηn =
[
a1 · · · an b1 · · · bn

]>

Choose n “sufficiently large” for the truncation error to be “sufficiently small!”
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Multi-Step High Order Least-Squares Methods

Special case: High-Order FIR

yt = B(q, ηn)ut + et = G(q, ηn)ut + et

Matrix form:

Y = TN×n(u)η + E, TN×n(u) =




u1 0 0 . . . 0
u2 u1 0 . . . 0
u3 u2 u1 . . . 0
...

...
...

. . .
...

uN uN−1 uN−2 . . . uN−n+1




Cov η̂n = σ2
(
TTN×n(u)TN×n(u)

)−1
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Multi-Step High Order Least-Squares Methods

Prefiltering

yt =
Lo(q)

Fo(q)
ut +Ho(q)et, Â(q) ≈ H−1o ⇒

Â(q)yt =
Lo(q)

Fo(q)
Â(q)ut + Â(q)Ho(q)et ≈

Lo(q)

Fo(q)
Â(q)ut + et

Now use SM on prefiltered data {Â(q)yt, Â(q)ut}

The Box-Jenkins Steiglitz McBride Method.

For open loop data, BJSM is

• consistent

• asymptotically efficient for Gaussian noise (even for OE models!)

• still need to iterate (k →∞)
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Multi-Step High Order Least-Squares Methods

Prefiltering

Notice BJSM uses both high-order model and data when estimating the model.

However, the high-order ARX model is (almost) a sufficient statistic, so from a
statistical perspective we should be able to use this model only when estimating
the model.

Håkan Hjalmarsson | KTH Royal Institute of Technology Weighted Null Space Fitting | 17 of 52



Multi-Step High Order Least-Squares Methods

Residual Estimation

For a while we will for simplicity consider open loop data and the OE-case:

yt =
Lo(q)

Fo(q)
ut + et

and use a high-order FIR model

yt = G(q)ut + et, G(q) =

n∑

k=1

ηkq
−k

• High order predictor: ŷt = Ĝ(q)ut
• Form residuals: εt = yt − ŷt
• Use residuals in estimation: yt = L(q)

F (q)ut + εt
Net result:

yt =
L(q)

F (q)
ut + yt − ŷt ⇒ ŷt =

L(q)

F (q)
ut

V RE
N (θ) =

∑
t

(
ŷt − L(q)

F (q)ut

)2

Simulated output used instead of the real output - only high order model used!
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Multi-Step High Order Least-Squares Methods

Optimal model reduction

Model reduction taking the statistical properties of the high order estimate into
account.
• Use the (asymptotic) distribution of η̂

V E-ML
N (θ) =

(
ηn(θ)− η̂nN

)>
cov[η̂nN ]−1

(
ηn(θ)− η̂nN

)

The Extended Invariance Principle (EXIP)

• Use the asymptotic distribution of G(eiω, η̂nN )

√
N(G(eiω, η̂nN )−Go(eiω))) ∼ AsN

(
0,

σ2

Φu(ω)

)

V A-ML
N (θ) =

∫ 2π

0

|G(eiω, η̂nN )−G(eiω, θ)|2Φu(ω)dω

Asymptotic ML
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Multi-Step High Order Least-Squares Methods

Weighted Null Space Fitting

L(q)

F (q)
= G(q) ⇒ F (q)G(q)− L(q) = 0

⇒ F (q)Ĝ(q)− L(q) = F (q)(G(q) + ∆G(q))− L(q) = F (q)∆G(q)

Find F and L s.t. F (q)Ĝ(q)− L(q) behaves in a statistical way as F (q)∆G(q)

In equation form: F (q) = 1 + f1q
−1 + . . . fmq

−m = 1 + F̃ (q) ⇒

F (q)G(q)− L(q) = (1 + F̃ (q))G(q)− L(q) = G(q)−
[
1 −G(q)

] [L(q)

F̃ (q)

]

= g1q
−1 + . . . gnq

−n −
[
1 −(g1q−1 + . . .+ gnq−n)

] [ l1q−1 + lmq−m

f1q−1 + . . .+ fmq−m

]
⇔ η −Q(η)θ

V WNSF
N (θ) = (η̂nN−Q(η̂nN )θ)>

(
Tn×n(F (q, θ))cov[η̂nN ]TTn×n(F (q, θ))

)−1
(η̂nN−Q(η̂nN )θ)

Tn×n(F (q, θ)) n× n lower Toeplitz matrix of coefficients of F (q, θ)
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Multi-Step High Order Least-Squares Methods

Asymptotic Equivalence

Residual estimation, optimal model order reduction and WNSF are equivalent for
large sample sizes.
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Multi-Step High Order Least-Squares Methods

“Proof”

• Residual estimation: V RE
N (θ) =

∑
t

(
ŷt − L(q)

F (q)ut

)2

• Asymptotic ML: V A-ML
N (θ) =

∫ 2π

0
|G(eiω, η̂nN )−G(eiω, θ)|2Φu(ω)dω ≈

∫ 2π

0
|G(eiω, η̂nN )−G(eiω, θ)|2|UN (eiω)|2dω = (Parseval) =

∑
t

(
ŷt − L(q)

F (q)ut

)2

• EXIP: V E-ML
N (θ) =

(
η̂n(θ)− η̂nN

)>
cov[η̂nN ]−1

(
ηn(θ)− η̂nN

)

but σ2cov[η̂nN ]−1 = TN×n(u)TTN×n(u), and

TN×n(u)(ηn(θ)− η̂nN ) =


G(q, θ)u1 −G(q, η̂nN )u1

...
G(q, θ)uN −G(q, η̂nN )uN

 =


G(q, θ)u1 − ŷ1

...
G(q, θ)uN − ŷN


• WNSF:

V WNSF
N (θ) = (η̂nN −Q(η̂nN )θ)>

(
Tn×n(F (q, θ))cov[η̂nN ]TT

n×n(F (q, θ))
)−1

(η̂nN −Q(η̂nN )θ)

η̂nN −Q(η̂nN )θ ⇔
F (q, θ)G(q, η̂nN )− L(q, θ) = F (q, θ)G(q, η̂nN )− L(q, θ)− (F (q, θ)G(q, η(θ))− L(q, θ))︸ ︷︷ ︸

0

= F (q, θ)(G(q, η̂nN )−G(q, η(θ))) ⇔ Tn×n(F (q, θ))(η̂nN − η(θ))

Håkan Hjalmarsson | KTH Royal Institute of Technology Weighted Null Space Fitting | 22 of 52



Multi-Step High Order Least-Squares Methods

Towards Least-Squares

Residual Estimation:
∑
t(ŷt −

L(q)
F (q)ut)

2

Still as non-convex as PEM. Advantage??

Modified cost function:
∑
t(F (q)ŷt − L(q)ut)

2

Least-Squares! but is it any good, c.f. modified PEM?

Let the order n of the FIR model G grow to infinity: n(N)→∞ as N →∞.
⇒ Ĝ(q)→ Go(q)⇒ Error in ŷt vanishes as N →∞⇒ ŷt = Go(q)ut

Least-squares estimate consistent (unlike modified PEM)!
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Multi-Step High Order Least-Squares Methods

Consistent Least-Squares Estimation

• Residual Estimation:
∑
t(F (q)ŷt − L(q)ut)

2

• Optimal model order reduction (Asymptotic ML):∫ 2π

0
|F (eiω)G(eiω, η̂nN )− L(eiω)|2Φu(ω)dω

• WNSF: (η̂nN −Q(η̂nN )θ)>
(
Tn×n(1)cov[η̂nN ]TTn×n(1)

)−1
(η̂nN −Q(η̂nN )θ)

All consistent if n(N)→∞ at a suitable rate:

• Not too slow: n(N)/(log(N))1+δ →∞ for some δ > 0

• Not too fast: n4+δ(N)/N → 0
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Multi-Step High Order Least-Squares Methods

Towards Asymptotically Efficient Least-Squares

Residual Estimation:
∑
t(F (q)ŷt − L(q)ut)

2

ŷt = G(q, η̂nN )ut = Go(q)ut + ∆G(q)ut

F (q)ŷt − L(q)ut = (F (q)Go(q)− L(q))ut + F (q)∆G(q)ut

F (q)∆G(q)ut random error term. Has to be white for asymptotic efficiency.

∆G(q) ⇔ η̂nN − ηo which has covariance σ2
(
TTN×n(u)TN×n(u)

)−1

⇒ ∆G(q)ut is temporally white!

⇒ F (q)∆G(q)ut is NOT temporally white :(
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Multi-Step High Order Least-Squares Methods

Asymptotically Efficient Least-Squares

Idea: Two-steps

Residual Estimation:

1. Minimize
∑
t(F (q)ŷt − L(q)ut)

2 ⇒ L̂, F̂ (consistent)

2.
∑
t(F (q) 1

F̂ (q)
ŷt − L(q) 1

F̂ (q)
ut)

2 ⇒ ˆ̂
L,

ˆ̂
F

Result:
ˆ̂
L,

ˆ̂
F asymptotically efficient if n(N)→∞ at a suitable rate.

• Optimal model order reduction (Asymptotic ML):

∫ 2π

0

|F (eiω)G(eiω, η̂nN )− L(eiω)|2 Φu(ω)

|F̂ (eiω)|2
dω

• WNSF: (η̂nN −Q(η̂nN )θ)>
(
Tn×n(F̂ (q))cov[η̂nN ]TTn×n(F̂ (q))

)−1
(η̂nN −Q(η̂nN )θ)

Summary: Three steps: i) High order LS, ii) OLS, iii) WLS
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Multi-Step High Order Least-Squares Methods

A Brief History of Iterative Least-Squares and High-Order Methods

• Durbin 1959: MA. High order AR-model. Clever way of using that model as weighting as well
⇒ Only two steps!

• Durbin 1960: ARMA. High order AR-model. Alternate between MA-part (using previous
result), and AR-part (easy).

• Santathan & Koerner 1963: Steiglitz-McBride in frequency domain.

• Steiglitz-Mcbride 1965: Steiglitz-McBride iterations.

• Mayne & Firoozan 1982: ARMA. Residual estimation. All three steps. Consistency &
asymptotic efficiency but when first N and then n tends to infinity.

• Hannan & Rissanen 1982: ARMA. Residual estimation. Uses model in step 2 to form new
residual estimate. Order estimation. Recursive. n = n(N). Consistency and asymptotic
efficiency.

• Hannan & Kavaleris 1983: As Mayne & Firoozan but consistency analyzed for n = n(N).

• Mayne, Åström & Clark 1984: As Mayne & Firoozan but recursive.

• Hannan & Kavaleris 1984: As Hannan & Rissanen but multivariate & order recursive.
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Multi-Step High Order Least-Squares Methods

A Brief History of Iterative Least-Squares and High-Order Methods

• Zhu 1989: ASYM - Asymptotic ML in time-domain (=Residual estimation)

• Wahlberg 1989: Asymptotic ML.

• Zhu 2011: Box-Jenkins Steiglitz-Mcbride. Prefiltering method.

• Dufour & Jouini 2014: VARMA. Multi-step.

• Galrinho, Rojas and Hjalmarsson 2014: WNSF.

• Everitt, Galrinho and Hjalmarsson 2017: MORSM. Residual estimation.

• Fang, Galrinho & Hjalmarsson 2017: WNSF. Recursive.
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Multi-step LS vs subspace identification

Multi-step LS vs subspace identification

Subspace id:
1) Estimate Hankel matrix

H =


g1 g2 g3 . . .
g2 g3 g4 . . .
g3 g4 g5 . . .
...

...
...

. . .

 = OeCe

2) Obtain estimate of extended observability matrix Oe using SVD

W1ĤW2 = USV T

Oe = W−11 Ū S̄1/2

where Ū and S̄ truncated versions of U and S.

This means that the range space of H is estimated.

3) Estimate state-space matrices from Oe.
Data only used in Step 1. W1 can be used to affect the statistical accuracy.
Not clear what the optimal weighting is.
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Multi-step LS vs subspace identification

Multi-step LS vs subspace identification

WNSF:

F (q)G(q)−L(q) = 0 ⇒ (1+f1q
−1+. . .+fmq

−m)(g1q
−1+. . . gnq

−n)−(l1q
−1+. . .+lmq

−m) = 0

Look at delays higher than m:


g1 g2 g3 . . . gf
g2 g3 g4 . . . gf+1

g3 g4 g5 . . . gf+2

...
...

...
. . .

...
gf gf+1 gf+2 . . . g2f−1





fm
...
f1
1
0
...
0


= 0
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Multi-step LS vs subspace identification

Multi-step LS vs subspace identification

but also


g1 g2 g3 . . . gf
g2 g3 g4 . . . gf+1

g3 g4 g5 . . . gf+2

...
...

...
. . .

...
gf gf+1 gf+2 . . . g2f−1





fm 0 0 . . . 0
fm−1 fm 0 . . . 0
fm−2 fm−1 fm . . . 0

...
...

... . . .
...

f1 f2 f3 . . . 0
1 f1 f2 . . . fm
0 1 f1 . . . fm−1

0 0 1 . . . fm−2

...
...

... . . .
...

0 0 0 . . . 1



= 0

• H has rank m⇒ Nullspace of H has dim f −m
• Right hand factor has f −m columns

• Right hand factor has full column rank

• Parametrization of null-space of H!
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Multi-step LS vs subspace identification

Multi-step LS vs subspace identification

Estimate f1, . . . , fm by solving


ĝ1 ĝ2 ĝ3 . . . ĝf
ĝ2 ĝ3 ĝ4 . . . ĝf+1

ĝ3 ĝ4 ĝ5 . . . ĝf+2

...
...

...
. . .

...
ĝf ĝf+1 ĝf+2 . . . ĝ2f−1





fm 0 0 . . . 0
fm−1 fm 0 . . . 0
fm−2 fm−1 fm . . . 0

...
...

... . . .
...

f1 f2 f3 . . . 0
1 f1 f2 . . . fm
0 1 f1 . . . fm−1

0 0 1 . . . fm−2

...
...

... . . .
...

0 0 0 . . . 1



= 0

ĝ noisy.⇒ Need to take statistics into account (c.f. subspace id)
Same problem as in subspace id? No!!!

In this case we can vectorize the system of equations⇒ WNSF!

Simpler to in a statistically efficient way estimate elements in the null-space than
elements in the range space of a matrix
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Multi-step LS vs subspace identification

Multi-step LS vs subspace identification

Summary:

Method Subspace id Multi-step LS
Subspace Range space Null space

Weighting of Ĥ vec
{
Ĥ
}

Estimation method SVD+LS LS
Can incorporate structural information NO YES
Consistency YES YES
Asymptotic efficiency Special cases YES
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Multi-Step LS: State-of-the-Art

MIMO models

Matrix-Fraction Description (MFD) OE-MIMO:

yt = F−1(q)L(q)ut + et

High order model: MIMO-FIR

yt = G(q)ut + et

F−1(q)L(q) = G(q) ⇔ F (q)G(q)− L(q) = 0

Same as in the SISO case!

OE, ARMAX, BJ, MAX, . . .

MFD, element-wise parameterizations
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Multi-Step LS: State-of-the-Art

MIMO models: Output error with element wise parametrization
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Multi-Step LS: State-of-the-Art

MIMO models: Output error with element wise parametrization

0

20

40

60

80

0

500

1000

1500

2000
0

5

10

15

20

25

30

35

40

45

 

SNR

Difference in FIT between OEWNSF and OESITB. n
u
: 5. n

y
: 5. n: 10− MaxMagPoleRange: [0,0.8]. F

u
 3. H: 1

N
 −30

−20

−10

0

10

20

30
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Multi-Step LS: State-of-the-Art

Dynamic Network Identification
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would be notationally heavy, but it is easy to understand
that the results therein still apply in the MIMO case. The
challenge in proving consistency and asymptotic efficiency
is to keep track of the bias and variance errors in the
non-parametric model. It is possible that nA must tend
to infinity to obtain unbiased estimates: for that, we make
nA a function of sample size N , as suggested by Ljung
and Wahlberg (1992). Assuming standard identifiability
conditions for MIMO systems (Ljung, 1999), the key step
in extending the proof of Galrinho et al. (2017b) is to
guarantee that the difference between the noisy weighted
regression matrices and the true ones converge in some
norm. In the MIMO case, these matrices will be larger,
but their dimensional increase still satisfies the same rates.
Thus, assuming standard rates of increase of n(N) (Ljung
and Wahlberg, 1992)—n(N)4+δ/N → 0 (δ > 0) suffices
for all theoretical results—the method is consistent and
asymptotically efficient.

5. IMPLEMENTATION ISSUES AND SIMULATIONS

5.1 Selecting the ARX-order and the number of iterations

The quality of the estimated parameters may be influenced
by the order of the ARX model. Since it is known that
PEM is asymptotically efficient, one possibility is to choose
the ARX order which minimizes (4) (Galrinho et al.,
2017b). The same criterion can be used to select the
number of iterations. If some combinations of ARX order
and iteration lead to unstable models for particular data
sets, these unstable models will not be selected.

5.2 Transient estimation

With the ARX-model being of high order, the handling of
transient effects becomes important for short data records.
Estimating the transient can then improve the model
quality since the transient contains information regarding
the poles of the network. We will not go into details here
on how this can be done but refer to Galrinho et al. (2015).

5.3 A SISO model

Asymptotic and iterative properties will be shown by
estimating G32 in the network depicted in Fig. 1 for L = 3.
The network consists of 3 nodes with these dynamics

G32 =
q−1 + 0.5q−2

1− 0.5q−1 + 0.2q−2
, H33 =

1− 0.6q−1

1− 0.85q−1
,

G21 =
0.4q−1 − 0.2q−2

1 + 0.4q−1 − 0.5q−2
, H22 =

1− 0.3q−1

1− 0.9q−1
,

G13 =
0.8q−1

1− 0.3q−1
, G12 =

−0.7q−1

1− 0.7q−1
, H11 =

1 + 0.5q−1

1− 0.7q−1
.

The Gaussian white noises driving the network are uncor-
related and of equal power. Since H is diagonal, the joint-
direct method consists of three separate MISO problems
that can individually be solved. A third order ARMAX
model is estimated for node 3. Mean squared error of the
impulse response is used as the performance measure.

Simulations with varying number of samples N are per-
formed over 100 Monte-Carlo runs, for the sufficiently high
ARX order nA = 35. For each different data length N ,
100 Monte-Carlo runs are performed, and the MSE of

w2 w3

w1

G12 G21
G13

v2

G32

v1

v3

wL

G1L

GL(L-1)

vL

...

Fig. 1. An L node network used for simulations.

moduleG32(θ̂N ) is averaged over the runs. Fig. 2 shows the
resulting average MSE per data length N for the 2nd, 3rd
and 10th iteration of Algorithm 1, and for the joint-direct
estimate (4) computed by the Matlab algorithm armax()
using the true system as initialization.

103 104

N

10-2

10-1

M
S
E

Fig. 2. Average MSE over 100 Monte-Carlo runs plotted
against data length N . Blue: Step 2, Red: Step 3, Yel-
low: 10-th iteration, and Purple: the direct method.

For small number of data N , Algorithm 1 has a slightly
higher MSE than PEM. Increasing N leads to improved
models for each step of the algorithm. Around N = 3 ·104,
step 3 has the same MSE as PEM, and around N = 6 ·103
the 10-th iteration has the same MSE as PEM. The point
of these simulations is to show that this algorithm with
explicit solution is a close approximation of the non-convex
optimization problem (4), even for small data sets.

The WNSF algorithm, with weight W (θ̂
[0]
N ) = P in the

second step, was tested on the same data, resulting in
a plot indistinguishable from Fig. 2, which would be
redundant to include.

5.4 A 5 node network

In order to show that the algorithm is competitive in
a multi-input setting we include an estimation of the
network in Fig. 1 for L = 5 with randomly generated
dynamics. Module G12 is estimated in a 4-input-1-output
setting using samples N = 1000 samples. Per Monte-Carlo
run, the modules are randomly generated with restrictions:

• Modules are randomly generated by drss() and of
2nd order, with |G(z)| < 0.9 and and ‖G(z)‖H2 = 0.5.

• The closed-loop transfer T and the predictor filtersW
satisfy |T (z)| < 0.95 and |W (z)| < 0.95 respectively.

Process noises are colored, Hi is first order, and all driving
white noises are uncorrelated with equal power. A network
ARMAX model of order 9 is able to exactly model the
network. Models are estimated with these algorithms:

• Algorithm 1 with order and iteration selection as
specified in Section 5.1.

• The SSARX subspace identification algorithm imple-
mented in Matlab as part of the n4sid() function.
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• PEM, with the armax() algorithm of Matlab with
standard initialization.

• PEM, with the armax() algorithm of Matlab with the
true system as initialization.

Performance is evaluated by fit ratio defined by

fg(θ) = 1− ‖g(θ0)− g(θ)‖2
‖g(θ0)‖2

, (31)

where g is the impulse response of a module. In total
100 Monte-Carlo runs are performed, and the resulting
fit of module G12 is shown in Fig. 3. The PEM algorithm
starts to struggle with these 4 inputs, but the performance
of each algorithm is competitive. For the MISO case,
Algorithm 1 is competitive with existing algorithms.

Algorithm 1 SSARX PEM PEM oracle
0

20

40

60

80

100

fit

Fig. 3. Fit of G12 for 100 randomly generated systems and
data sets for: Algorithm 1, SSARX, PEM with stan-
dard initialization, PEM initialized by true system.

6. CONCLUSIONS

We have presented a method for identification of dynamic
networks that is based on a sequence of least-squares steps.
It generalizes the method for ARMA models presented
in Mayne and Firoozan (1982) and we have shown that
for SISO models it corresponds to WNSF, which through
the analysis in (Galrinho et al., 2017b) suggests that
consistency and asymptotic efficiency can be established
under suitable conditions on the rate of increase of the
ARX-model order as function of the sample size. With
simulations we have verified that the method achieves
asymptotic efficiency in a SISO setting subject to Gaussian
disturbances. In a more challenging network setting, the
method is competitive with PEM and SSARX. because
it can be straightforwardly applied with MIMO ARMAX
(where SSARX cannot encode the network topology), we
conclude that Algorithm 1 is promising for global network
identification with correlated noise, also with the potential
use of providing initialization points for PEM.
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w(t) = G(q)w(t) +R(q)r(t) +H(q)e(t)

Interconnection structure given by

G(q) =




0 G12(q) G13(q)
G21(q) 0 G23(q)
G31(q) G32(q) 0



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G(q) =




0 G12(q) G13(q)
G21(q) 0 G23(q)
G31(q) G32(q) 0




Suppose

G(q) = D−1(q)NG(q), R(q) = D−1(q)NR(q), H(q) = D−1(q)NH(q)

w = Gw +Rr +He ⇔ D(q)w(t) = NG(q)w(t) +NR(q)r(t) +NHe(t)

which can be written

(D(q)−NG(q))w(t) = NR(q)r(t) +NHe(t)

ARMA!
A range of structures can be accomodated for. For example

D(q) diagonal: All transfer functions to one node have the same poles.
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Cascade Networks

u(t) G1(q) G2(q)

e1(t) e2(t)

y1(t) y2(t)
[
y1(t)
y2(t)

]
=




L1(q,θ)
F1(q,θ)

L2(q,θ)
F2(q,θ)

L1(q,θ)
F1(q,θ)


u(t) + e(t)

PEM: can be difficult...
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Cascade Networks

[
y1(t)
y2(t)

]
=




L1(q,θ)
F1(q,θ)

L2(q,θ)
F2(q,θ)

L1(q,θ)
F1(q,θ)


u(t) + e(t)

≈
[∑n

k=1 g
(1)
k q−k∑n

k=1 g
(21)
k q−k

]
u(t) + e(t) =⇒ ĝ

(1)
k , ĝ

(21)
k (LS)





L1(q,θ)
F1(q,θ)

= Ḡ1(q, g)
L2(q,θ)
F2(q,θ)

Ḡ1(q, g) = Ḡ21(q, g)
⇔
{
F1(q, θ)Ḡ1(q, g)− L1(q, θ) = 0
F2(q, θ)Ḡ21(q, g)− L2(q, θ)Ḡ1(q, g) = 0

WNSF can be applied with optimal asymptotic properties
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Errors-in-Variables Problems in Dynamic Networks

v3t v2t

rt G23(q) G12(q)

G31(q)

v1t

w3
t w2

t

w1
t

Measurements: w̃t = wt + st

Estimate G12. Errors-in-variables problem!

• IV
• Two-stage methods
• WNSF, but requires more steps (no time for this, unfortunately)

Håkan Hjalmarsson | KTH Royal Institute of Technology Weighted Null Space Fitting | 43 of 52



Multi-Step LS: State-of-the-Art

Dynamic Networks: Simulation

IV 2Stage MORSM

0

50

100

↓ 5 ↓ 1

F
IT

IV 2Stage MORSM naive true P

0

50

100

↓ 5 ↓ 1 ↓ 19

F
IT
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Noise with High-order Dynamics

A low-order parametrization of the noise model...

• ...will not give asymptotic efficiency in open loop

• ...will not give consistency in closed loop

In Step 1, WNSF capture the noise with the non-parametric model

In Step 2, we may only compute a parametric model of the plant!

H(q, θ) =
1

A(q, η)
G(q, θ) =

B(q, η)

A(q, η)

Håkan Hjalmarsson | KTH Royal Institute of Technology Weighted Null Space Fitting | 45 of 52



Multi-Step LS: State-of-the-Art

Noise with High-order Dynamics

True noise model given by very long FIR without a low-order parametrization.

Noise models:

• WNSF and PEMnp use a noise model H(q, a) = 1/[1 +
∑70
k=1 akq

−k].

• PEMaic and PEMbic use a noise model
H(q; c, d) = [1 +

∑m
k=1 ckq

−k]/[1 +
∑m
k=1 dkq

−k], m = {1, ..., 30},
with m decided with AIC/BIC.

WNSF PEMaic PEMbic PEMnp

60

80

100

↓1 ↓4

F
IT

N=5000

WNSF PEMaic PEMbic PEMnp

↓4 ↓5 ↓4

N=10000 Average computational times [s]

N 5000 10000

WNSF 0.907 1.29
PEMaic,bic 26.8 38.1

PEMnp 133 236
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Online Identification

Recursive PEM:

θ̂t = θ̂t−1 +
1

t
Λ−1t ψt(θ̂t−1)εt(θ̂t−1)

The gradient ψt(θ) and the prediction error εt(θ) cannot be computed with
fixed-size memory =⇒ approximations!

Recursive WNSF:

• ARX model can be computed recursively

• Parametric estimate update identical to offline method

θ̂t =
[
Q>(η̂nt )W (θ̂t−1)Q(η̂nt )

]−1
Q>(η̂nt )W (θ̂t−1)η̂nt (1)
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Online Identification

0
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Nonlinear Models

Rational in parameters models:

y(t) =
f(ϕ(t))θ

1 + g(ϕ(t))θ
+ e(t)

where ϕ(t) function of past inputs and outputs.

Multi-step LS procedure:

i) High order expansion: y(t) =
∑∞
k=0 αkγk(ϕ(t))

for example Taylor expansion

ii) Truncation and LS-estimation: α̂ = argminα
∑N
t=1

(
y(t)−∑n

k=1 αkγk(ϕ(t))
)2

ii) Simulated model output: ŷ(t) :=
∑n
k=1 α̂kγk(ϕ(t))

iii) Residual estimation: ŷ(t) ≈ f(ϕ(t))θ
1+g(ϕ(t))θ

iv) Multi-step LS: θ̂k+1 = argminθ
∑N
t=1

(
ŷ(t)(1+g(ϕ(t))θ)−f(ϕ(t))θ

1+g(ϕ(t))θ̂k

)2
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Nonlinear Models

y(t) =
θ1u(t− 1)

1 + θ2u2(t)
+ e(t) =

∞∑

k=0

αku(t− 1)u2k(t)650	 Mina Ferizbegovic  et al. / IFAC PapersOnLine 51-15 (2018) 646–651

However, unlike Steiglitz-McBride for linear OE models,
this will not provide consistent estimates of the non-linear
FIR model of interest, as we will illustrate in Section 5.

An Example To illustrate the algorithm of NMORSM, let
us consider the rational non-linear FIR model given by

y(t) =
θ1u(t− 1)

1 + θ2u2(t)
+ e(t).

In terms of (2), we have f(ut
t−p) = [u(t− 1) 0], g(ut

t−p) =

[0 u2(t)], and θ = [θ1 θ2]
�.

In Step 1, for |θ2u2(t)| < 1, we perform the expansion

θ1u(t− 1)

1 + θ2u2(t)
=θ1u(t− 1)

∞∑

k=0

aku
2k(t)=

∞∑

k=0

bku(t− 1)u2k(t).

Here, the coefficients ak and bk are related to θ by ak = θk2
and bk = θ1θ

k
2 , but algorithm does not use this explicitly.

Truncating the expansion to n coefficients, our model is

y(t) =

n∑

k=0

bku(t− 1)u2k(t) + e(t),

for which we estimate the parameter bn by least squares

with ϕ(t) =
[
u(t− 1) u(t− 1)u2(t) · · · u(t− 1)u2n(t))

]�
.

In Step 2, we generate simulated data using

ŷ(t) =

n∑

k=0

b̂nku(t− 1)u2(t),

where b̂n is the estimate of bn. Finally, in Step 3, we iterate
by minimizing the cost function

VN (θ) =
1

N

N∑

t=1

[
1 + θ2u

2(t)

1 + θ̂
(k)
2 u2(t)

ŷ(t)− θ1u(t− 1)

1 + θ̂
(k)
2 u2(t)

]2

using least-squares.

5. NUMERICAL SIMULATIONS

Let us consider the rational non-linear FIR model given by

y(t) =
θ1u(t− 1) + θ2u

2(t− 2)

1 + θ3u2(t) + θ4u(t− 1)u(t− 2)
+ e(t),

where u(t) is uniformly distributed noise in the interval
[−1, 1], the noise e(t) has standard deviation σ = 0.5, and

θo = [1 2 0.6 0.3]
�
. The model has correct structure. A

thousand Monte Carlo simulation were performed with ten
different sample sizes N between 100 to 100000.

We compare PEM and NMORSM. For PEM, a concern is
how to initialize the optimization procedure. We considered
two different initialization points: the true parameter values
and the estimates provided by NMORSM. For NMORSM, a
concern is how to choose the order n of the non-parametric
model. The solution is identical to the linear case: we apply
NMORSM for a grid of values of n, compute the PEM cost
function for each of the parametric models obtained, and
choose the model estimate at which this cost function is
lowest (Everitt et al., 2017). To illustrate how non-linear
Steiglitz-McBride (i.e., Step 3 of NMORSM if applied to
measured data) is biased, we include also this procedure.

Thus, the following methods are compared:

• NMORSM with a grid of non-parametric orders n =

{3, 5, 7} and ten iterations (i.e., the estimate θ̂
(10)
N );

102 103 104 105
10−2

10−1

100

N

R
M
S
E

SM-nl

NMORSM

PEM-NMORSM

PEM-true

Fig. 1. Average RMSE as function of sample size for
different methods.

• PEM initialized at the true model parameters, using
the fminsearch function in MATLAB2017b, with a
maximum number of 1000 iterations (PEM-true);

• PEM with the same implementation, but initialized
at the NMORSM estimate (PEM-NMORSM).

• non-linear Steiglitz-McBride, with a maximum of 1000
iterations (SM-nl).

The accuracy of each estimate is computed by measuring

the root mean-square error (RMSE = ||θ̂N − θo||), where
θ̂N is a vector with the estimated model parameters for a
particular method.

The average RMSE for each sample size and method
is presented in Fig. 1. This simulation suggests that
NMORSM has the same asymptotic performance as PEM
initialized at the true model parameters, which implies
that the method may be asymptotically efficient. For
lower sample sizes, NMORSM does not have the same
performance as PEM, but its estimate can be used to
initialize PEM: with this initialization, PEM had the same
performance as with initialization at the true parameters.
Finally, the RMSE of non-linear Steiglitz McBride (i.e.,
Step 3 of MORSM if it were applied to measured data)
does not decrease as N increases. This implies that these
estimates are biased, and it motivates the importance of
using the non-parametric estimate and simulated data.

6. DISCUSSION

A system identification method has been proposed for
estimating rational non-linear FIR models. This method is
an extension of MORSM, which has been proposed to deal
with the non-convexity of PEM for linear model structures.
The idea of the method is to first estimate a non-parametric
model that approximates the true system; this is then used
to generate a simulated data set to which the Steiglitz-
McBride algorithm is applied. In the linear case, it has
been shown by Everitt et al. (2017) that the method is
asymptotically efficient in open loop.

In this contribution, we have extended this procedure to
be applicable to rational non-linear FIR model structures.
First, we estimate a non-parametric model based on a
function expansion of the non-linear rational function.
Second, we use this estimate to generate a simulated data
set. Third, we apply iterative least squares intercalated
with data correction between each iteration, analogously
to Steiglitz-McBride for linear systems. A numerical sim-
ulation suggests that, similarly to linear MORSM, the
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proposed method is asymptotically efficient for rational
non-linear FIR models. For smaller sample sizes, it can also
be useful to provide initial conditions for PEM.

For the non-parametric model estimated in the first step,
we used a polynomial expansion of [1 + g(ut

t−p)θ]
−1 in the

input. The choice of polynomial expansion is for simplicity,
but it has some disadvantages. First, we must have
that |g(ut

t−p)θ
o| < 1. Second it imposes some excitation

conditions: for example, if the input u(t) has repeated
values, the least-squares problem becomes ill-conditioned.
These limitations require the use of inputs that are within
certain bounds and unlikely to have repeated values (such
as uniformly distributed noise, as we used in the example).

To deal with these limitations, in future work we will
consider alternative function expansions. We will provide
a theoretical analysis of the method, perform more simu-
lations to study robustness to model errors, and consider
extensions to more general non-linear model structures.
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Conclusions

Conclusions

• PEM may require very accurate initial conditions to converge to the global
minimum
◦ Systems with several resonance peaks
◦ Systems with widely spread eigenvalues

• Multi-step high order LS may be appropriate to handle these scenarios:
◦ Less sensitive to the effect of the initial condition
◦ Faster convergence
◦ Asymptotically efficient

• Other scenarios where multi-step high-order LS may be useful:
◦ MIMO
◦ Online identification
◦ Dynamic networks
◦ Overparametrized models
◦ Non-parametric noise spectra
◦ Non-linear models
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