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Introduction

Problem Setting

True System:

Model:

1160~ b

Estimate 6!
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Introduction

Prediction Error Method

Minimize cost function:
N 2
1 L(q,0)
PEM /gy _ _ 2\ 7
O =2 0.0 <y F(4,0) “)

t=1

Non-convex!
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Introduction

Test example

Box-Jenkins:

U= g T T 09g 1
System (6t order):
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Introduction

Simulation
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Introduction

Simulation

Alternatives and complements to PEM:

e |nstrumental variable methods

Subspace methods

Iterative least-squares methods

Multi-step high-order least-squares methods
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Iterative Least Squares Methods

Iterative Least Squares Methods

Output Error Models: y; = %ut + ey

PEM: VEEM(0) = S0, (1 — A un)?

Non-convex :( Tempting to try:

N
> (Flg)ye — L(q)uy)?

t=1

Modified PEM is Least-Squares!
but biased since we (for open Ioop data) are minimizing

al Lo(q) F(q)Lo(q) — Fo(q)L g
Z (F(Q) <Fo(q) ut + et L(q Z Fo(q) +; F(q et
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Iterative Least Squares Methods

Steiglitz-McBride

Step 1: Estimate F(q,0)y: = L(q,0)us + e = 0N

Step 2: Filter the data according to

f 1 f 1
+ 7A1yt, Uy = 7Alut

Y

Step 3: Estimate F(q,0)y{ = L(q,0)u! + ¢ = 0%

Iterate!
1 F(q,0 L(q,0
VN(@) _ N Z (q Ak) . — (q Ak) .
= LF(a,0%) F(q,0%)

0% — 0, as k — oo and N — 00
...but the noise must be white and 6 is not asymptotically efficient!
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Multi-Step High Order Least-Squares Methods

Multi-Step High Order Methods

Prefiltering

Residual estimation

Optimal model reduction

Weighted Null Space Fitting (WNSF)
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Multi-Step High Order Least-Squares Methods

High-Order ARX Models

1 _
Ao(q):H (q) = 1+a(1)q ! + asq 2 +
GO o — o
Bo(a)=7; 8 = We e

Alq,n")ye = B(g,n" )us + e
Alg,n")=1+a1qg '+ +ang™  Blgn")=big "+ +bug "
T
n’ = [al cee o Qp, bl bn]

Choose n “sufficiently large” for the truncation error to be “sufficiently small!”
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Multi-Step High Order Least-Squares Methods

Special case: High-Order FIR

v = B(g,n™")ur + er = G(q, 0™ )up + €

Matrix form:
Uy 0 0 0
Ug Uy 0 0
Y = Tnsn(W)n+E, Tnxn(u) = us Uo uq 0

UN UN-1 UN-2 ... UN-—p+1

—1
Cov i = 0 (T () T () )
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Multi-Step High Order Least-Squares Methods

Prefiltering

_ Lo(q) SN -
Yt = o(q) u + Ho(q)er, Alg) = H, =
Alq)y: = j;:gg; A(q)ue + A(q)Ho(q)er ~ ILTZEZ;A(Q)W +e

Now use SM on prefiltered data {A(q)y:, A(q)u}
The Box-Jenkins Steiglitz McBride Method.

For open loop data, BJSM is

e consistent

e asymptotically efficient for Gaussian noise (even for OE models!)
e still need to iterate (kK — o0)
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Multi-Step High Order Least-Squares Methods

Prefiltering

Notice BJSM uses both high-order model and data when estimating the model.

However, the high-order ARX model is (almost) a sufficient statistic, so from a
statistical perspective we should be able to use this model only when estimating
the model.
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Multi-Step High Order Least-Squares Methods

Residual Estimation

For a while we will for simplicity consider open loop data and the OE-case:

Lo(q)
t Folq) U + €t

and use a high-order FIR model

ye = GlQ)us + e, Glg) =D mg ™"

k=1
e High order predictor: ij; = G(q)us
e Form residuals: €, = y; — s
e Use residuals in estimation: y; = FEZ% ur + €t
Net result: L) L)
q A A q
= — —N =
Yt F(q) U + Y — Yt Yt F(q) Uy

2
FE0) = 3, (9 - 7Gw)
Slmulated output used instead of the real output - only high order model used!
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Multi-Step High Order Least-Squares Methods

Optimal model reduction

Model reduction taking the statistical properties of the high order estimate into
account.

o Use the (asymptotic) distribution of 7
- n AN T AN — n AT
V() = (n"(0) —aRy) - covlir] ™! (n"(0) — )

The Extended Invariance Principle (EXIP)

e Use the asymptotic distribution of G(e™,A%)

02
VN(G(e™, 7)) — Go(e))) ~ AsN (o, %(w)>

2m
VEM0) = [ G iR) ~ Gl 0P, )

Asymptotic ML
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Multi-Step High Order Least-Squares Methods

Weighted Null Space Fitting

L) _

Fo) G(g = F(9G(g—L(g)=0

= F(9)G(a) - L(a) = F(¢)(G(a) + Ag(9)) — L(g) = F(a)Ag ()
Find F and L sit. F(q)G(q) — L(q) behaves in a statistical way as F(q)Ag(q)

In equation form: F(q) =1+ fig ' + ... fmg ™ =1+ F(q) =

F(q)G(q) — L(q) = (1 + F(q))G(q) — L(q) = G(q) — [I —G(q)]

F(q)

llq_l + lmq_m
ot fmg™

L(q)]

=q1a7 ' +...gng "= [1 —(a 4. 4 gng )] [ﬁ

< n—Qn)o

-1
VAT (0) = (i~ QU0 T (T (F(a. 0))covliRITE(F(0.0))) (i~ QUiR)0)
Tnxn(F(q,0)) n x n lower Toeplitz matrix of coefficients of F(q,0)
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Multi-Step High Order Least-Squares Methods

Asymptotic Equivalence

Residual estimation, optimal model order reduction and WNSF are equivalent for
large sample sizes.
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Multi-Step High Order Least-Squares Methods

“Proof”

2
* Residual estimation: VRE(9) =, (yt (@) )

Flg
o Asymptotic ML: VEML(9) = fo |G (e, %) — G(e™,0)|?®,, (w)dw ~
. 2
ST G i) — G(e“,@)\2|UN(e“")| dio = (Parseval) = 52, (1 — F(Guw )
o EXIP: VEML(0) = (77(0) — %) covi] ™" (n7"(0) — i)
but o2cov[i%] ! = Ty xn (u)T T xn(u), and
G(g,0)u1 — G(g, N )u1 G(g,0)u1 — G
TN xn(uw)(n™(6) —A%) = : = :
G(q,0)un — G(q,7% )un G(q,0)un — N
o WNSF: )
VRIS (6) = (i — QUiR)0) T (Trxn (F(a, 0))coviR T, (F(4,6))) (% — Q(a%)6)
iy — QRO &
F(q,0)G(g,Mn) — L(g,0) = F(q,0)G(q,x) — L(g,0) — (F(q,0)G(q,n(0)) — L(q,0))

0
F(g,0)(G(a,n) — G(a,1(0))) & Tnxn(F(q,0))(Ax — ()
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Multi-Step High Order Least-Squares Methods

Towards Least-Squares

Residual Estimation: ), (9 — %ut)
Still as non-convex as PEM. Advantage??
Modified cost function: >, (F(q)9: — L(q)ut)?

Least-Squares! but is it any good, c.f. modified PEM?

Let the order n of the FIR model G grow to infinity: n(N) — oo as N — oco.
= G(q) = G,(q) = Error in §; vanishes as N — 0o = 9 = Go(q)us

Least-squares estimate consistent (unlike modified PEM)!

Hakan Hjalmarsson |  KTH Royal Institute of Technology Weighted Null Space Fitting | 23 of 52



Multi-Step High Order Least-Squares Methods

Consistent Least-Squares Estimation

¢ Residual Estimation: >, (F(q)g: — L(q)us)?

e Optimal model order reduction (Asymptotic ML):
27 iw w AN iw
Jo " IF ()G (™, nf) — L(e™)[? @y (w)dw

o WNSF: (ii% — Qi3)0) ™ (Txen (D cov[i ] T T, (1) (i — QUi%)0)

All consistent if n(IN) — oo at a suitable rate:

e Not too slow: n(N)/(log(N))'*% — oo for some § > 0
e Not too fast: n**°(N)/N — 0
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Multi-Step High Order Least-Squares Methods

Towards Asymptotically Efficient Least-Squares

Residual Estimation: >, (F(q)§: — L(q)u:)?

9e = G(q, iy )ur = Go(Q)ur + A (q)ue
F(q)g: — L(q)ur = (F(q)Go(q) — L(q))ur + F(q)Ac(q)ue
F(q)Ag(q)us random error term. Has to be white for asymptotic efficiency.

—1
Ac(q) < A% — n, which has covariance o2 (T]z;m(u)Tan(u))

= Ag(q)ut is temporally white!

= F(q)Ag(q)us is NOT temporally white :(
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Multi-Step High Order Least-Squares Methods

Asymptotically Efficient Least-Squares

Idea: Two-steps

Residual Estimation:
1. Minimize 3°,(F(q): — L(q)us)*> = L, F (consistent)

P 12 Fog
Result: L, F asymptotically efficient if n(IN) — oo at a suitable rate.

e Optimal model order reduction (Asymptotic ML):

2
| rERGE. i) - e

|F ()2
. . -1
o WNSF: (i ~ QUi)0) " (Tsca(F(0) eVl I TE(F(0)) ) (i — QUR)0)
Summary: Three steps: i) High order LS, ii) OLS, iii) WLS
Hikan Hjalmarsson |  KTH Royal Institute of Technology
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Multi-Step High Order Least-Squares Methods

A Brief History of Iterative Least-Squares and High-Order Methods

® Durbin 1959: MA. High order AR-model. Clever way of using that model as weighting as well
= Only two steps!

® Durbin 1960: ARMA. High order AR-model. Alternate between MA-part (using previous
result), and AR-part (easy).

® Santathan & Koerner 1963: Steiglitz-McBride in frequency domain.
® Steiglitz-Mcbride 1965: Steiglitz-McBride iterations.

® Mayne & Firoozan 1982: ARMA. Residual estimation. All three steps. Consistency &
asymptotic efficiency but when first N and then n tends to infinity.

® Hannan & Rissanen 1982: ARMA. Residual estimation. Uses model in step 2 to form new
residual estimate. Order estimation. Recursive. n = n(N). Consistency and asymptotic
efficiency.

® Hannan & Kavaleris 1983: As Mayne & Firoozan but consistency analyzed for n = n(NV).
® Mayne, Astrom & Clark 1984: As Mayne & Firoozan but recursive.

® Hannan & Kavaleris 1984: As Hannan & Rissanen but multivariate & order recursive.
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Multi-Step High Order Least-Squares Methods

A Brief History of Iterative Least-Squares and High-Order Methods

® Zhu 1989: ASYM - Asymptotic ML in time-domain (=Residual estimation)
® Wahlberg 1989: Asymptotic ML.

® Zhu 2011: Box-Jenkins Steiglitz-Mcbride. Prefiltering method.

® Dufour & Jouini 2014: VARMA. Multi-step.

® Galrinho, Rojas and Hjalmarsson 2014: WNSF.

® Everitt, Galrinho and Hjalmarsson 2017: MORSM. Residual estimation.

® Fang, Galrinho & Hjalmarsson 2017: WNSF. Recursive.
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Multi-step LS vs subspace identification

Multi-step LS vs subspace identification

Subspace id:
1) Estimate Hankel matrix
91 g2 g3
92 93 94

H=|gs g1 g5 ...| =0cCe

2) Obtain estimate of extended observability matrix O, using SVD

WiHW, = USVT
0, = W[lust?
where U and S truncated versions of U and S.

This means that the range space of H is estimated.
3) Estimate state-space matrices from O..

Data only used in Step 1. Wj can be used to affect the statistical accuracy.
Not clear what the optimal weighting is.
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Multi-step LS vs subspace identification

Multi-step LS vs subspace identification

WNSF:

F(9)G(9)—L(g) =0 = (1+f1g '+ . +fma ") (g1a” "+ .. gng™™")=(lig™ " +.. +lmg™ ™) = 0
Look at delays higher than m:

fm
g1 g2 g3 gr :
g2 g3 g4 cee gf41 f
gs ga gs ce. gf+2 1 -0
. . . . 0
9f  9f+1  9f+2 - 92f-1 :
0
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Multi-step LS vs subspace identification

Multi-step LS vs subspace identification

but also
[ fm 0 0 ... 0]
fm—l fm 0 0
fm72 fmfl fm 0
g1 g2 g3 ... gy : : : :
92 gs g4 gf+1 . . . .
g3 g4 gs gf+2 fl f2 f3 0 -0
. . . . 1 f1 fo ... fm
: : : . : 0 1 1 . fm-1
g  9f+1  9f+2 ... g2f—1 0 0 1 cee fm—2
0 0 0 1
e 7H has rank m=> Nullspace of H has dim f —m
e Right hand factor has f —m columns
¢ Right hand factor has full column rank

e Parametrization of null-space of H!

Hakan Hjalmarsson |  KTH Royal Institute of Technology Weighted Null Space Fitting | 32 of 52



Multi-step LS vs subspace identification

Multi-step LS vs subspace identification

Estimate f1,..., f;n by solving

fm 0 0 ... 0
f'm—l fm 0 0
fm72 fmfl fm 0
g Ge gz ... gr . . . .
g2 J3 in coe g5 : : : :
g3 94 g5 .- Gr+2 bjl forofsoo 01
. . . . 1 fi fo ... fm
: : : . : 0 1 fi oo fmea
af  Gr+1 Gf+2 - G2f—1 0 0 1 ... fm2
0 0 0 1

g noisy. = Need to take statistics into account (c.f. subspace id)
Same problem as in subspace id? Nol!!!
In this case we can vectorize the system of equations = WNSF!

Simpler to in a statistically efficient way estimate elements in the null-space than
elements in the range space of a matrix

Hakan Hjalmarsson |  KTH Royal Institute of Technology Weighted Null Space Fitting | 33 of 52



Multi-step LS vs subspace identification

Multi-step LS vs subspace identification

Summary:

Method Subspace id | Multi-step LS
Subspace Range space Null space
Weighting of H vec {7:[}
Estimation method SVD+LS LS

Can incorporate structural information NO YES
Consistency YES YES
Asymptotic efficiency Special cases YES
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Multi-Step LS: State-of-the-Art

MIMO models

Matrix-Fraction Description (MFD) OE-MIMO:

yr = FH (q) L(q)ur + e
High order model: MIMO-FIR

yr = G(q)us + e

F~Y(q)L(q) = G(q) < F(q)G(q) — L(q) =0

Same as in the SISO case!
OE, ARMAX, BJ, MAX, ...

MFD, element-wise parameterizations
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Multi-Step LS: State-of-the-Art

MIMO models: Output error with element wise parametrization

100
EWNSF
ESITB

Mean FIT. n: 5. ny: 5. n: 10. MaxMagPoleRange: [0,0.8]. 53. H:1

80
100 60
40
50
20
0
0
-20
-40
=50
2000
-60
-80

-100

N A~

Hakan Hjalmarsson | KTH Royal Institute of Technology Weighted Null Space Fitting | 37 of 52



Multi-Step LS: State-of-the-Art

MIMO models: Output error with element wise parametrization

Difference in FIT between OEWNSF and OESITB. n; 5. ny: 5. n: 10- MaxMagPoleRange: [0,0.8]. li 3.H:1
30

N 0 o ——
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Multi-Step LS: State-of-the-Art

Dynamic Network Identification

V2

Interconnection structure given by

0 Gi2(q) Gi3(q)
G(q) = |Ga(q) 0 G23(q)
G31(q) Gaa2(q) 0
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Multi-Step LS: State-of-the-Art

Dynamic Network Identification

Suppose
G(q) = D™ (¢)Na(q), R(q) =D '(q)Nr(q), H(q) =D "(q)Nu(q)

w=Gw+ Rr+ He < D(qw(t) = Ng(q)w(t) + Nr(q)r(t) + Nge(t)

which can be written

(D(q) — Na(q))w(t) = Nr(q)r(t) + Nue(t)

ARMA!
A range of structures can be accomodated for. For example

D(q) diagonal: All transfer functions to one node have the same poles.
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Multi-Step LS: State-of-the-Art

Cascade Networks

u(t) ~Gi(q) G2(q)

Y1 (t) Y2 (t)

y1(t) IL;(%z)
[ t)]: Load) Lrlg) | 1) +e(t)
F>(q,0) Fi(q,0)

PEM: can be difficult...
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Multi-Step LS: State-of-the-Art

Cascade Networks

[m(ﬂ] 7o)

_ 14,

= | La(a.6) Ta(a0) | W(0) +e(t)
ya(t) Fa(q.0) Fr(q.0)

~ | Zigp)et ut)y+et) = a7, (LS)
~ S g (21) " i 9k

Eégvgifc”l(qg) @{ 1(¢:0)G1 (4, 9) — Li(q,6) = 0
lLvi(ZIZ)Gl(q,g) G21(q,9) Fy(q, )Gm(q g) — L2(q,0)G1(q,9) =0

WNSF can be applied with optimal asymptotic properties

Weighted Null Space Fitting | 42 of 52
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Multi-Step LS: State-of-the-Art

Errors-in-Variables Problems in Dynamic Networks

v} v
w? Ao
Tt Ga3(q) ) Gi2(q)
G31(q) T T
Wy
v

Measurements: w; = w; + S¢

Estimate G15. Errors-in-variables problem!

o |V

e Two-stage methods

e WNSF, but requires more steps (no time for this, unfortunately)
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Multi-Step LS: State-of-the-Art

Dynamic Networks: Simulation

B I By i =
50 f X
= x
L
——
0,,
é X
15 L1
\Y; 2Stage  MORSM
A
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Multi-Step LS: State-of-the-Art

Noise with High-order Dynamics

A low-order parametrization of the noise model...
e _..will not give asymptotic efficiency in open loop

e ..will not give consistency in closed loop

In Step 1, WNSF capture the noise with the non-parametric model
In Step 2, we may only compute a parametric model of the plant!

H(q,0) =

Alg,m) Alq,n)

Hakan Hjalmarsson |  KTH Royal Institute of Technology Weighted Null Space Fitting
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Multi-Step LS: State-of-the-Art

Noise with High-order Dynamics

True noise model given by very long FIR without a low-order parametrization.

Noise models:
o WNSF and PEMnp use a noise model H(q,a) = 1/[1+ Y1, arg™"].

e PEMaic and PEMbic use a noise model
H(gie,d) =1+ Y0 ewg */1+ > dig ], m = {1,...,30},
with m decided with AIC/BIC.

N=5000 N=10000 Average computational times [s]

o %} %} %] N 5000 10000
* % % ¥ 5 WNSF 0007 1.29
60 ¥ § i PEMaic,bic 26.8 38.1

L1 x x .4 L4

PEM,, 133 236

FIT

L4 I5
WNSF PEMaic PEMbic PEMnp WNSF PEMaic PEMbic PEMnp
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Multi-Step LS: State-of-the-Art

Online ldentification

Recursive PEM: )
0y =01 + gAt_lwtwt—l)ft(at—l)

The gradient ¢,(€) and the prediction error £,(f) cannot be computed with
fixed-size memory = approximations!

Recursive WNSF:
e ARX model can be computed recursively

e Parametric estimate update identical to offline method

0 - QTEW O QG] QAW Oy (1)
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Multi-Step LS: State-of-the-Art

Online ldentification

100 + : :
80 T
60 | $
- X
- %
40 + %
§
20 | :
X
07 112
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Multi-Step LS: State-of-the-Art

Nonlinear Models

Rational in parameters models:

RGOV,
L+ g(p(6)6

where ¢(t) function of past inputs and outputs.

y(t) +e(t)

Multi-step LS procedure:
i) High order expansion: y(t) = >~ o arve(e(t))
for example Taylor expansion
ii) Truncation and LS-estimation: & = argmin, Zi\il (y(t) — Spr cnve(e(t)))
ii) Simulated model output: §(t) := >_}'_; arve(e(t))

i) Residual estimation: §(t) ~ %

2

2
iv) Multi-step LS: ;41 = argmin, Zi{il <@(t)(1+fjr<§((223)))éf(<p(t))0>
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Multi-Step LS: State-of-the-Art

Nonlinear Models

Glu(t — 1

y(t) = —1 e Z apu(t — 1)u?*(t)
T T T T T T T T T T T
100 8 : ssnns SM-nl E
g NMORSM ]
C% i e PEM-NMORSM |
E 10~ E === PEM-true -
10 2 L1 L1 [
102 10 104 10°
N

Hékan Hjalmarsson | KTH Royal Institute of Technology Weighted Null Space Fitting | 50 of 52



Conclusions

Conclusions

e PEM may require very accurate initial conditions to converge to the global
minimum
o Systems with several resonance peaks
o Systems with widely spread eigenvalues

e Multi-step high order LS may be appropriate to handle these scenarios:
o Less sensitive to the effect of the initial condition

o Faster convergence
o Asymptotically efficient

e Other scenarios where multi-step high-order LS may be useful:

MIMO

Online identification
Dynamic networks
Overparametrized models
Non-parametric noise spectra
Non-linear models

O O O O O O

Hakan Hjalmarsson |  KTH Royal Institute of Technology Weighted Null Space Fitting | 52 of 52



	Introduction
	Iterative Least Squares Methods
	Multi-Step High Order Least-Squares Methods
	Multi-step LS vs subspace identification
	Multi-Step LS: State-of-the-Art
	Conclusions

