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The problem Ogunnaike 1996: 
There is 
abundant 
evidence in 
industrial 
practice that 
when modeling 
for control is 
not based on 
criteria related 
to the actual 
end use, the 
results can 
sometimes be 
quite 
disappointing 

Main objective 
Predictable performance 

 

The Problem 

Controller 

Ogunnaike 1996: 

... obtaining the 
process model 
is the single 
most time 
consuming task 
in the 
application of 
model based 
control 



Ogunnaike 1996:

... obtaining the process model is the single most time consuming
task in the application of model based control

I’m afraid this still describes state-of-the art....



My assistants

Please say hi to

Izzy and Ozzy



Preview: MPC of a DC-motor
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Input: Voltage V
Output: Angle φL
Model parameters θ: Resistance R, Moment of inertia JL,
Elasticity K, ...
True parameters: θo



Preview: MPC of a DC-motor

Ideal response: yt(θo) - true parameters used in MPC
Actual response: yt(θ) – parameter θ used in MPC

Constraint: Maximum input move 40

Performance degradation /Set of acceptable models

Vapp(θ) = 1
N

N∑
t=1

(yt(θo)− yt(θ))2

Eapp =
{
θ : Vapp(θ) ≤

1
γ

}
(γ = accuracy)



Preview: MPC of a DC-motor
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Set of acceptable models Eapp: (Maximum move size 3)

We want θ̂N ∈ Eapp



The issues involved

The shape of the set of acceptable controllers: Robust control
I The forgiving nature of feedback
I Fundamental limitations of feedback

How to construct the map Data → Controller
How to quantify errors (noise) in data
How to generate the data



How to construct the map Data → Controller

Data 

Full order 
controller 

Reduced order 
controller 

Reduced order 
model 

Full order 
model 

Which path to take???



How to construct the map Data → Controller
Identification recap

So

e

C

r u y

Prediction error identification:
I Prediction error: εt(θ)
I θ̂N = arg min

∑N
t=1 ε

2
t (θ), Vid(θ) = E[ε2

t (θ)]− λe ≥ 0
Random noise (innovations (noise) variance λe)
Stationary signals
True system in the model set: So ⇔ θo

High accuracy γ (implies large sample size N)√
N
(
θ̂N − θo

)
∼ AsN

(
0, 2λeV ′′id(θo)−1)



How to construct the map Data → Controller
A lot of work in the past 30 years

Linear model identification:

yt = G(q, θ)ut +H(q, θ)et
εt(θ) = H−1(q, θ)(yt −G(q, θ)ut)

Vid = E[ε2
t (θ)]− λe = 1

2π

∫ π

−π
|Go(eiω)−G(eiω, θ)|2 Φu(ω)

|H(eiω, θ)|2

(defines estimate as N →∞)

Model reference control (MRC):

Reference model: yd =T (q)r

MRC: C(G(θ)) = 1
G(θ)

T

1− T
min
θ

E[(y(C(G(θ)))− yd)2]



How to construct the map Data → Controller

εt(θ) = H−1(q, θ)(yt −G(q, θ)ut)
min
θ

E[(y(C(G(θ)))− yd)2]

Robust Performance 

I4C
Restricted Complexity Modeling 

Tuning the bias 

What can we do if the robust performance 
criterion is of L2 type? 

S(G,C) T(G,C) G−1

G

G0

- - 
r 

u (C)  y(C) 

y-yd

y(C(G))-yd(C(G))=S(G,C(G))(y(C(G))-G u(C(G))) 

y(C(G(θ)))− yd = S(G(θ), C(G(θ)))(y(C(G(θ)))−G(θ)u(C(G(θ))))

Tuning of the bias error:
Prefiltering (Rivera et al)
Model reference control (Karimi et al)
VRFT (Campi et al) - Direct model reference control
G(θ) = T/(1− T )/C(θ)
Iterative closed loop techniques (Zang/Gevers/Bitmead,
Schrama/Van den Hof)



How to construct the map Data → Controller

Let’s take a statistical approach:

Suppose that

yt = ft(u1:t, e1:t, θ), t = 1, 2, . . . , et white noise

Then the Cramér-Rao lower bound (CRLB)

Cov θ̂ ≥ I−1
F

applies to every unbiased estimate θ̂ of θ.

Here IF is the Fisher information matrix.

But also
Cov Ĉ(θ) ≥ C ′(θ)I−1

F [C ′(θ)]T

for any unbiased estimate Ĉ(θ) of the function C(θ).



How to construct the map Data → Controller

The ML (Maximum Likelihood) estimate, θ̂ML say,
typically achieves the CRLB, at least as the sample size grows.

But it also holds that:

C(θ̂ML) is the ML estimate of C(θ),
and thus also typically achieves the CRLB for C(θ)!



How to construct the map Data → Controller

Translation into control terms:

θ represents the true underlying system
C(θ) represents the desired controller, not necessarily full
order but it is a function of the underlying system (as defined
by some criterion)
ML estimate of the desired controller, obtained by
1) First computing the ML estimate θ̂ML of the entire system
2) Then computing the certainty equivalence controller C(θ̂ML)

This controller has optimal statistical performance, at least
when the sample size is large
This is the whatever you do, I can do better theorem



How to construct the map Data → Controller

Data 

Full order 
controller 

Reduced order 
controller 

Reduced order 
model 

Full order 
model 

Which path to take???



How to construct the map Data → Controller

Data 

Full order 
controller 

Reduced order 
controller 

Reduced order 
model 

Full order 
model 

Many paths can be taken but start with as good model as possible

Clean away as much noise first as possible
Enables correct uncertainty characterization



How to quantify errors (noise) in data
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We want θ̂N ∈ Eapp



How to quantify errors (noise) in data

Random noise ⇒ θ̂N random variable
Cannot guarantee θ̂N ∈ Eapp
Relaxation: Probability(θ̂N ∈ Eapp) = α(= 99% e.g.)
In general difficult to compute
Use standard asymptotic confidence ellipsoids:

Probability(θ̂N ∈ Eid) ≈ α, where

Desired situation:

θo
Eid

θo
EidEapp

θ̂N



How to generate the data

Application oriented experiment design (AOID)
Q := min

Exp. conditions
NE[u2

t ]

s.t. Eid ⊆ Eapp ⊂ Rn
θo
Eid

θo
EidEapp

Q = energy required in the identification experiment.
Called the cost of complexity
Least-costly identification (Bombois et al. Automatica 2006.)



An alternative formulation of AOID

Application oriented experiment design (AOID)
Q := minNE[u2

t ]
s.t. NVid(θ) ≥ λeγnVapp(θ), ∀θ ∈ Eapp



Illustration of AOID: Output error models

True system: yt = Go(q)ut + et

Model: yt = G(q, θ)ut + et

PE: εt(θ) = yt −G(q, θ)ut = (Go(q)−G(q, θ))ut + et

Vid(θ) = E[ε2
t (θ)]− λe

= 1
2π

∫ π

−π
Φid
u (ejω)

∣∣∣G(ejω, θ)−Go(ejω)
∣∣∣2 dω



Illustration of AOID: Output error models

Applications oriented experiment design (AOID)

Q := minNE[u2
t ] = 1

2π

∫ π

−π
NΦid

u (ejω) dω

s.t. NVid(θ)︸ ︷︷ ︸
1

2π

∫ π
−π NΦidu (ejω) |G(ejω ,θ)−Go(ejω)|2 dω

≥ λeγnVapp(θ)

Minimization with respect to energy density spectrum NΦid
u

Optimization tries to achieve

NVid(θ) = λe γ nVapp(θ)

Identification cost matched to performance degradation



Izzy and Ozzy goes to MRC (model reference control)

Go
yt

et

−C

ut

Controller C = C(G), G output error model
Desired sensitivity function: Sξ
Achieved sensitivity function: S(G) = 1

1+C(G)Go

Performance degradation: Vapp(G) :=
∥∥∥S(G)−Sξ

Sξ

∥∥∥2

2



MRC: The impact of the performance specs.

yt = Go(q)ut + et = θ1ut + θ2ut−1 + et

Low bandwidth ξ = 0.025. Mainly static gain important:
Vapp Vid

High bandwidth ξ = 1. Entire frequence response important:
Vapp Vid



MRC: Cost of complexity

Q := minNE[u2(t)]
s.t. NVid(θ) ≥ λeγnVapp(θ)

Matching condition: Vid(θ) = Vapp(θ)
Output error:
NVid(θ) = 1

2π
∫ π
−πNΦid

u (ejω)
∣∣G(ejω, θ)−Go(ejω)

∣∣2 dω
MRC:
Vapp(G) :=

∥∥∥S(G)−Sξ
Sξ

∥∥∥2

2
≈ 1

2π
∫ π
−π

Φdesiredu (ejω)
λe

|G−Go|2 dω

Take NΦid
u = γnΦdesired

u

Scaled version of desired operating conditions!
⇒ Upper bound: Q ≤ γn‖Φdesired

u ‖1



MRC: Cost of complexity

Q ≤ γn‖Φdesired
u ‖1 = λeγn

∥∥∥1−Sξ
Go

∥∥∥2

2
Allows user to make informed trade-offs:
Performance specs. vs experimental cost

Cost of complexity



Further insights: The MPC example

Q̃ := min E[u2(t)]
s.t. Vid(θ) ≥ Vapp(θ)

Maximum input move 3 Maximum input move 40

Performance specifications determine the shape of Vapp(θ)
Curvature of Vapp(θ) increases when specs. are tightened



Outline

How to construct the map Data → Controller

How to quantify errors (noise) in data

How to generate the data



Some connections to the past
Identification experiment = desired closed loop operating
conditions:

Random errors
I Minimum variance control (Gevers and Ljung 1986,

Hjalmarsson, Gevers and De Bruyne 1996, Hildebrand and
Solari 2007, Mårtensson, Rojas and Hjalmarsson 2009)

Bias errors
I Many contributions in the 1990s to identification for control,

e.g.:
I Control-relevant prefiltering (Rivera, Pollard, Garcia 1992)
I Iterative identification and control (Schrama 1992, Zang,

Bitmead and Gevers 1995)
I Virtual feedback reference tuning (Campi, Lecchini, Savaresi

2002)
Contributions here:

I Results above different sides of the same coin
(matching Vid and Vapp)

I Matching not enough. Sufficient input energy required.
(NΦidu = λeγnΦdesiredu )



The impact of AOID on the sysid problem
Static gain estimation

yt =
n∑
t=1

θkut−k + et

Performance degradation: Vapp(θ) = (
∑
θk −

∑
θok)2

θ1

θ2

θo

Vapp(θ) = 0

θ∗Optimal input: ut = u (constant) ⇒ yt =
∑
k θ

o
ku+ et

Property of interest visible
No other system property visible (due to min energy crit.)

⇒ Perfect match Vid(θ) ∝ Vapp(θ)
Same input optimal for high order system ⇒ high order ok
Vid(θ) ∝ Vapp(θ)⇒ Bias minimized!
Vid(θ∗) = 0 ⇒ no unmodelled dynamics ⇒ low order optimal



Applications oriented input design: Summary

AOID
Aims at achieving

NVid(θ) = λe γ nVapp(θ)

using minimum input energy

To achieve this requires parsimonious excitation:
i) System properties important to the application should be

visible in the data
ii) System properties not important to the application should not

be visible in the data, unless necessary for i).
(The let sleeping dogs lie paradigm)

As a result, the entire system may not have to be identified!
I The identification criterion measures Vapp (modulo scaling).
I Choice of model structure less critical
I Advice: Don’t use too low order (c.f. impulse response). Use

model reduction instead (c.f. the ASYM method by Zhu).



AOID for MPC
Signal

generation

System

System
identi-
fication

MPC(θ̂) MPC(θ)

M(θ̂) M(θ̂)

˜”V (θ, θ̂)

Input design

Simulation of MPC

y

θ̂

u u

”y(θ, θ̂) ”y(θ, θ̂)

Φopt
u

u

Φo
u



AOID for MPC: Water tank labprocess

Pump 1 Pump 2

Valve 1 Valve 2

Tank 1 Tank 2

Tank 4Tank 3



AOID for MPC: Water tank labprocess
Response in 20 experiments:
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Black: AOD. Red: White input with same power.



Implementation of AOID

Cost of complexity
Q := minNE[u2(t)]

s.t. NVid(θ) ≥ λeγnVapp(θ)

Optimization problem depends on the unknown system!
Major obstacle
Solutions:

I Robust experiment design
(e.g. Rojas, Welsh, Goodwin, Feuer 2007)

I Adaptive (sequential) experiment design



Adaptive input design

Ru Go

Ho

et

ut yt
white
noise vt

Recursive IdExp. design
θ̂(t)

Ru(t)

An adaptive feedback system
But measured signal not fed back directly
Exp. design limits input power ⇒ Stability when Go stable

Key questions:
Convergence?
Accuracy?



Adaptive input design

Key questions:
Convergence?
Accuracy?

Theorem (Gerencsér’s free lunch theorem for ARX-models)
True system in the model set
System stable

⇒ Optimality when sample size grows



Adaptive input design

What happens when true system is not in the model set?

Example
NMP-zero estimation

Quantity of interest: zo: Go(zo) = 0, |zo| > 1
Optimal input: ut = c

z−1−zowt

Vid and Vapp not matched (c.f. impulse response problem)
Still yt = θ1ut + θ2ut−1 ⇒ consistent estimate



Example: Non-minimum phase zero estimation

True system: yt = (q − 3)(q − 0.1)(q − 0.2)(q + 0.3)
q4(q − 0.5) ut + q

q − 0.8e
o
t

Model: yt = θ1q + θ2
q2 ut + et

True system Zero estimate



Adaptive input design

MPC-X - Model Predictive Control with eXperiment design

Add “Eid ⊂ Eapp” as (final) constraint to standard MPC
Related work: Persistence of exciation (Marafioti/Bitmead,
Rathousky/Havlena et al)
Tested on a depropanizer (SASOL, Sekunda, South Africa)



Izzy and Ozzy interrupts

- But hey, through the entire talk you have assumed that the true
system is in the model set. This is never the case!

- Yeah, you have been pulling this spiel for ten years now. Surely
you can do better, or?

- Yeah, what about this factor little n? Not so little in reality, no?

Recall that n is the number of estimated parameters, the
complexity of the model.

The experimental cost is proportional to n....



Is there a problem?

The water-bed effect (Rojas, Welsh and Agüero):
1

2π

∫ π

−π
NΦid

u (ejω)︸ ︷︷ ︸
Input energy density

Var[Ĝ(ejω)]dω = n︸︷︷︸
# parameters

λe︸︷︷︸
noise variance

(output error models)

A fundamental limitation of full order models



In fact

There’s only one system!
Hmm, n seems to be pretty big (=∞?).

How handle 1
2π

∫ π

−π
CovG(eiω, θ̂N ) Φu(ω)

|Ho(eiω)|2dω =∞ ???



Handling complexity

The situation is clearly absurd.

Consider an exponentially stable linear system that is not finite
dimensional.

The preceeding theory cannot cope with this type of system,
although this is the type of system that we model and control

every day (I suspect).



Handling complexity
Split model in two parts:

I “Core” with, say, n parameters
(The part that has a large impact on the application - what we
usually call the model)

I “Dust”, the left-overs (that may have many parameters)
Estimate “Core”+”Dust”, i.e. entire system (as before), using
the data

I Error in “Core” model of the same type as we have used (with
some minor modifications)

I The error
∫ π
−π |

′′true dust′′|2 can be estimated from the “dust”
model, with accuracy depending on the experimental
conditions.

Implications for AOID:
I Eapp should have two parts: “Core”⊂ Eapp &∫ π
−π |

′′true dust′′|2 ≤ δ.
I The experiment design tries to:

I Emphasize “Core”
I Bound the “Dust” integral (below δ)
I Minimize the correlation between the two

I Performance requirements determine n!



Philosphical intermission: The Chained Snake

Input: Force

Position

Output: Position at x=1

x=1



The Chained Snake – A simplified analog

The more excitation, the more complex behaviour
Little excitation, essentially a second order system
n = 2. A simple problem!
The n we talk about pertains to the parts of the system that
are excited

Confidence ellipsoids always look like

Key issue: The intended use of the model



Another aspect of model complexity: Model selection

AIC unbiased estimate of E[Vid(θ̂N )]
Optimal experiment design: Vid ∝ Vapp
Use AIC to estimate E[Vapp(θ̂N )]
Model order selection with the application in mind
MRC example revisited:
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Performance degradation

Histogram − white input − AIC

1/γ

40% fail60% pass
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Performance degradation

Histogram − optimal input − AIC

1/γ

7% fail93% pass



Summary: What have we learnt?

The whatever you do, I can to better theorem, or
always first model as well as possible.
Caveat: Result asymptotic in sample size. For finite simple
size there may be better methods.
A framework for applications oriented experiment design
(AOID)
Allows the user to make trade-offs between end-performance
and experimental effort
The let sleeping dogs lie paradigm

I The optimal experiment matches the identification criterion to
the performance degradation using parsimonious excitation

I Simplifies the identification problem
Adaptive input design practical implementation. e.g. MPC-X
Core and dust modeling

I Handle on system complexity
I Model order determined by performance requirement and prior

knowledge



Summary: What we haven’t learnt?

The world abound with data. But process data is always in
closed loop. Very hard to handle in identification.
(Non-stationary) disturbances causing inverse controller
responses. Still biggest challenge.
Development of regularization based algorithms has exploded.
Interesting results using Bayesian non-parametric methods,
e.g. Gaussian Processes (yet for me to understand how to
understand what is meant by the posterior distribution). Also
linked to previous item.
New potent algorithms for estimating MIMO systems
emerging (Weighted Null Space Fitting & Model Order
Reduction Steiglitz-McBride)
Impressive developments in nonlinear identification for systems
with process noise
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